Monday, 21 December 2009

Anaerobic Biodegradation


Anaerobic microbial mineralization of recalcitrant organic pollutants is of great environmental significance and involves intriguing novel biochemical reactions. In particular, hydrocarbons and halogenated compounds have long been doubted to be degradable in the absence of oxygen, but the isolation of hitherto unknown anaerobic hydrocarbon-degrading and reductively dehalogenating bacteria during the last decades provided ultimate proof for these processes in nature. Many novel biochemical reactions were discovered enabling the respective metabolic pathways, but progress in the molecular understanding of these bacteria was rather slow, since genetic systems are not readily applicable for most of them. However, with the increasing application of genomics in the field of environmental microbiology, a new and promising perspective is now at hand to obtain molecular insights into these new metabolic properties. Several complete genome sequences were determined during the last few years from bacteria capable of anaerobic organic pollutant degradation. The ~4.7 Mb genome of the facultative denitrifying Aromatoleum aromaticum strain EbN1 was the first to be determined for an anaerobic hydrocarbon degrader (using toluene or ethylbenzene as substrates). The genome sequence revealed about two dozen gene clusters (including several paralogs) coding for a complex catabolic network for anaerobic and aerobic degradation of aromatic compounds. The genome sequence forms the basis for current detailed studies on regulation of pathways and enzyme structures. Further genomes of anaerobic hydrocarbon degrading bacteria were recently completed for the iron-reducing species Geobacter metallireducens (accession nr. NC_007517) and the perchlorate-reducing Dechloromonas aromatica (accession nr. NC_007298), but these are not yet evaluated in formal publications. Complete genomes were also determined for bacteria capable of anaerobic degradation of halogenated hydrocarbons by halorespiration: the ~1.4 Mb genomes of Dehalococcoides ethenogenes strain 195 and Dehalococcoides sp. strain CBDB1 and the ~5.7 Mb genome of Desulfitobacterium hafniense strain Y51. Characteristic for all these bacteria is the presence of multiple paralogous genes for reductive dehalogenases, implicating a wider dehalogenating spectrum of the organisms than previously known. Moreover, genome sequences provided unprecedented insights into the evolution of reductive dehalogenation and differing strategies for niche adaptation


Text Source: Wikipedia Liscence NGU

No comments: