In molecular biology, a hybridization probe is a fragment of DNA or RNA of variable length (usually 100-1000 bases long), which is used to detect in DNA or RNA samples the presence of nucleotide sequences (the DNA target) that are complementary to the sequence in the probe. The probe thereby hybridizes to single-stranded nucleic acid(DNA or RNA) whose base sequence allows probe-target base pairing due to complementarity between the probe and target.
The labeled probe is first denatured (by heating or under alkaline conditions) into single DNA strands and then hybridized to the target DNA (Southern blotting) or RNA (northern blotting) immobilized on a membrane or in situ.
To detect hybridization of the probe to its target sequence, the probe is tagged (or labelled) with a molecular marker; commonly used markers are 32P (a radioactive isotope of phosphorus incorporated into the phosphodiester bond in the probe DNA) or Digoxigenin, which is non-radioactive antibody-based marker. DNA sequences or RNA transcripts that have moderate to high sequence similarity to the probe are then detected by visualizing the hybridized probe via autoradiography or other imaging techniques. Detection of sequences with moderate or high similarity depends on how stringent the hybridization conditions were applied - high stringency, such as high hybridization temperature and low salt in hybridization buffers, permits only hybridization between nucleic acid sequences that are highly similar, whereas low stringency, such as lower temperature and high salt, allows hybridization when the sequences that are less similar. Hybridization probes used in DNA microarrays refer to DNA covalently attached to an inert surface, such as coated glass slides or gene chips, and to which a mobile cDNA target is hybridized.
Depending on the method the probe may be synthesised via phosphoramidite technology or generated and labeled by PCR amplification or cloning (older methods). In order to increase the in vivo stability of the probe RNA is not used, instead RNA analogues may be used, in particular morpholino.
The labeled probe is first denatured (by heating or under alkaline conditions) into single DNA strands and then hybridized to the target DNA (Southern blotting) or RNA (northern blotting) immobilized on a membrane or in situ.
To detect hybridization of the probe to its target sequence, the probe is tagged (or labelled) with a molecular marker; commonly used markers are 32P (a radioactive isotope of phosphorus incorporated into the phosphodiester bond in the probe DNA) or Digoxigenin, which is non-radioactive antibody-based marker. DNA sequences or RNA transcripts that have moderate to high sequence similarity to the probe are then detected by visualizing the hybridized probe via autoradiography or other imaging techniques. Detection of sequences with moderate or high similarity depends on how stringent the hybridization conditions were applied - high stringency, such as high hybridization temperature and low salt in hybridization buffers, permits only hybridization between nucleic acid sequences that are highly similar, whereas low stringency, such as lower temperature and high salt, allows hybridization when the sequences that are less similar. Hybridization probes used in DNA microarrays refer to DNA covalently attached to an inert surface, such as coated glass slides or gene chips, and to which a mobile cDNA target is hybridized.
Depending on the method the probe may be synthesised via phosphoramidite technology or generated and labeled by PCR amplification or cloning (older methods). In order to increase the in vivo stability of the probe RNA is not used, instead RNA analogues may be used, in particular morpholino.
Text Source: Wikipedia Liscence NGU