Tuesday, 24 June 2008

What is a Genetic Marker

A genetic marker is a known DNA sequence. It can be described as a variation, which may arise due to mutation or alteration in the genomic loci, that can be observed. A genetic marker may be a short DNA sequence, such as a sequence surrounding a single base-pair change (single nucleotide polymorphism, SNP), or a long one, like minisatellites.
.

Some commonly used types of genetic markers are

  • RFLP (or Restriction fragment length polymorphism)
  • AFLP (or Amplified fragment length polymorphism)
  • RAPD (or Random amplification of polymorphic DNA)
  • VNTR (or Variable number tandem repeat)
  • Microsatellite polymorphism
  • SNP (or Single nucleotide polymorphism)
  • STR (or Short tandem repeat)
  • SFP (or Single feature polymorphism)


They can be further categorized as dominant or co-dominant. Dominant markers allow for analyzing many loci at one time, e.g. RAPD. A primer amplifying a dominant marker could amplify at many loci in one sample of DNA with one PCR reaction. Co-dominant markers analyze one locus at a time. A primer amplifying a co-dominant marker would yield one targeted product.

.
Uses:


Genetic markers can be used to study the relationship between an inherited disease and its genetic cause (for example, a particular mutation of a gene that results in a defective protein). It is known that pieces of DNA that lie near each other on a chromosome tend to be inherited together. This property enables the use of a marker, which can then be used to determine the precise inheritance pattern of the gene that has not yet been exactly localized.
Genetic markers have to be easily identifiable, associated with a specific locus, and highly polymorphic, because homozygotes do not provide any information. Detection of the marker can be direct by RNA sequencing, or indirect using allozymes.


Some of the methods used to study the genome or phylogenetics are RFLP, Amplified fragment length polymorphism (AFLP), RAPD, SSR.


Insulin production


Genetic markers also play a role in genetic engineering, as they can be used to produce normal, functioning proteins to replace defective ones. The damaged or faulty section of DNA is removed and replaced with the identical, but functioning, gene sequence from another source.
This is done by removal of the faulty section of DNA and its replacement with the functioning gene from another source, usually a human donor. These gene sections are placed in solution with bacterial cells, a small number of which take up the genetic material and reproduce the new DNA sequence. Engineers need to know which bacteria have been successful in duplicating these genes so another gene is added, altering the bacteria's resistance to antibiotics. Replica plating or a fermenter is used to grow enough bacteria to test resistance to antibiotics. It is important that the cultures are not mixed.This process can be used as a treatment for diabetes mellitus. Bacterial DNA often has two resistency genes: one for tetracycline and one for ampicillin. The insulin gene can be inserted in the middle of the ampicillin gene after it has been removed using restriction endonucleases. If the gene has been taken up, the bacteria both produces insulin and is also no longer ampicillin resistant. The bacteria are then allowed to grow on an agar plate containing a culture medium. The bacteria grow and produce colonies on the agar jelly. A piece of filter paper can be placed onto the top of this agar plate so that the exact positions of the colonies are remembered. This produces a copy which can then be transferred onto a second agar plate containing ampicillin. All of the bacteria that are not resistant to ampicillin will die. These locations on the second plate show the places on the first plate where bacteria are not resistant and therefore produce insulin. Another similar method is followed, in which an epitope sequence is added to insert. When the insert is expressed so is the epitope. Then this epitope can be effectively bound using an antibody on a filter paper. And the expressing colonies can be easily selected.

Text Source: Wikipedia Liscence NGU

What is a Gene

A gene is a locatable region of genomic sequence, corresponding to a unit of inheritance, which is associated with regulatory regions, transcribed regions and/or other functional sequence regions. The physical development and phenotype of organisms can be thought of as a product of genes interacting with each other and with the environment. A concise definition of a gene, taking into account complex patterns of regulation and transcription, genic conservation and non-coding RNA genes, has been proposed by Gerstein et al."A gene is a union of genomic sequences encoding a coherent set of potentially overlapping functional products".
Colloquially, the term gene is often used to refer to an inheritable trait which is usually accompanied by a phenotype as in ("tall genes" or "bad genes") -- the proper scientific term for this is allele.
In cells, genes consist of a long strand of DNA that contains a promoter, which controls the activity of a gene, and coding and non-coding sequence. Coding sequence determines what the gene produces, while non-coding sequence can regulate the conditions of gene expression. When a gene is active, the coding and non-coding sequence is copied in a process called transcription, producing an RNA copy of the gene's information. This RNA can then direct the synthesis of proteins via the genetic code. But some RNAs are used directly, for example as part of the ribosome. These molecules resulting from gene expression, whether RNA or protein, are known as gene products.
Genes often contain regions that do not encode products, but regulate gene expression। The genes of eukaryotic organisms can contain regions called introns that are removed from the messenger RNA in a process called splicing. The regions encoding gene products are called exons. In eukaryotes, a single gene can encode multiple proteins, which are produced through the creation of different arrangements of exons through alternative splicing. In prokaryotes (bacteria and archaea), introns are less common and genes often contain a single uninterrupted stretch of DNA, called a cistron, that codes for a product. Prokaryotic genes are often arranged in groups called operons with promoter and operator sequences that regulate transcription of a single long RNA. This RNA contains multiple coding sequences. Each coding sequence is preceded by a Shine-Dalgarno sequence that ribosomes recognize.

The total set of genes in an organism is known as its genome. An organism's genome size is generally lower in prokaryotes, both in number of base pairs and number of genes, than even single-celled eukaryotes. However, there is no clear relationship between genome sizes and complexity in eukaryotic organisms. One of the largest known genomes belongs to the single-celled amoeba Amoeba dubia, with over 670 billion base pairs, some 200 times larger than the human genome. The estimated number of genes in the human genome has been repeatedly revised downward since the completion of the Human Genome Project; current estimates place the human genome at just under 3 billion base pairs and about 20,000–25,000 genes. A recent Science article gives a number of 20,488 protein-coding genes, with perhaps 100 more yet to be discovered. The gene density of a genome is a measure of the number of genes per million base pairs (called a megabase, Mb); prokaryotic genomes have much higher gene densities than eukaryotes. The gene density of the human genome is roughly 12–15 genes per megabase pair.

Text Source: Wikipedia Liscence