Often only a small modification needs to be made to the 'standard' PCR protocol to achieve a desired goal:
One of the first adjustments made to PCR was the amplification of more than one target in a single tube. Multiplex-PCR can involve up to a dozen pairs of primers acting independently. This modification might be used simply to avoid having to prepare many individual reactions, or could allow the simultaneous analysis of multiple targets in a sample that has only a single copy of a genome. In testing for genetic disease mutations, six or more amplifications might be combined. In the standard protocol for DNA Fingerprinting, the 13 targets assayed are often amplified in groups of 3 or 4. Multiplex Ligation-dependent Probe Amplification (or MLPA) permits multiple targets to be amplified using only a single pair or primers, avoiding the resolution limitations of multiplex PCR
VNTR PCR involves few modifications to the basic PCR process, but instead targets areas of the genome that exhibit length variation. The analysis of the genotypes of the sample usually involves simple sizing of the amplification products by gel electrophoresis. Analysis of smaller VNTR segments known as Short Tandem Repeats (or STRs) is the basis for DNA Fingerprinting databases such as CODIS.
Asymmetric PCR is used to preferentially amplify one strand of the target DNA. It finds use in some types of sequencing and hybridization probing, where having only one of the two complementary strands of the product is advantageous. PCR is carried out as usual, but with a limiting amount of one of the primers. When it becomes depleted, continued replication leads to an arithmetic increase in extension of the other primer. A recent modification on this process, known as Linear-After-The-Exponential-PCR (or LATE-PCR), uses a limiting primer with a higher melting temperature Melting temperature (or Tm) than the excess primer to maintain reaction efficiency as the limiting primer concentration decreases mid-reaction. (Also see Overlap-extension PCR).
Some modifications are needed to perform long PCR. The original Klenow-based PCR process had trouble making a product larger than about 400 bp. However, early characterization of Taq polymerase showed that it could amplify targets up to several thousand bp long. Since then, modified protocols have allowed targets of over 50,000 bp to be amplified
Nested PCR, another early modification, can be used to increase the specificity of DNA amplification. Two sets of primers are used in two successive reactions. In the first, one pair of primers is used to generate DNA products, which may also contain products amplified from non-target areas. The products from the first PCR are then used to start a second, using one ('hemi-nesting') or two different primers whose binding sites are located (nested) within the first set. The specificity of all of the primers is combined, usually leading to a single product. Nested PCR is often more successful in specifically amplifying long DNA products than conventional PCR, but it requires more detailed knowledge of the sequence of the target.
Quantitative PCR (or Q-PCR) is used to measure the specific amount of target DNA (or RNA) in a sample. The normal PCR process is performed in a way that is largely qualitative - the amount of final product is only slightly proportional to the initial amount of target. By carefully running the amplification only within the phase of true exponential increase (avoiding the later 'plateau' phase), the amount of product is more proportional to the initial amount of target. Thermal cyclers have been developed which can monitor the amount of product during the amplification, allowing quantitation of samples containing a wide range of target copies. A method currently used is Quantitative Real-Time PCR. QRT-PCR methods use fluorescent dyes, such as Sybr Green, or fluorophore-containing DNA probes, such as TaqMan, to measure the amount of amplified product as the amplification progresses. It is often confusingly referred to as RT-PCR, the same acronym used for PCR combined with Reverse Transcriptase (see below), which itself might be used in conjunction with Q-PCR. More appropriate acronyms are QRT-PCR or RTQ-PCR.
Hot-start PCR is a technique that modifies the way that a PCR mixture is initially heated. During this step the polymerase is active, but the target has not yet been denatured and the primers may be able to bind to non-specific locations (or even to each other). The technique can be performed manually by heating the reaction components to the melting temperature (e.g. 95°C) before adding the polymerase. Alternatively, specialized systems have been developed that inhibit the polymerase's activity at ambient temperature, either by the binding of an antibody, or by the presence of covalently bound inhibitors that only dissociate after a high-temperature activation step. 'Hot-start/cold-finish PCR' is achieved with new hybrid polymerases that are inactive at ambient temperature and are only activated at elevated temperatures.
Another simple modification can also decrease non-specific amplification. In Touchdown PCR, the temperature used to anneal the primers is gradually decreased in later cycles. The annealing temperature in the early cycles is usually 3-5°C above the standard Tm of the primers used, while in the later cycles it is a similar amount below the Tm. The initial higher annealing temperature leads to greater specificity for primer binding, while the lower temperatures permit more efficient amplification to the end of the reaction.
Other common modifications to PCR allow it to amplify low copy targets. The original report on Taq polymerase showed how the use of up to 60 cycles could amplify targets diluted to just one copy per reaction tube. A later report showed how multiple genetic loci could be amplified and analyzed from a single sperm. Modified protocols have allowed the identification of just one copy of the HIV genome within the DNA of up to 70,000 host cells.
Assembly PCR (also known as Polymerase Cycling Assembly or PCA) is the artificial synthesis of long DNA structures by performing PCR on a pool of long oligonucleotides with short overlapping segments. The oligonucleotide building blocks alternate between sense and antisense directions, and the overlaps determine the order of oligonucleotides, thereby selectively producing the final long DNA product.
In Colony PCR, bacterial colonies are rapidly screened by PCR for correct DNA vector constructs. Colonies are sampled with a sterile toothpick and dabbed into a master mix. To free the DNA for amplification, PCR is either started with an extended time at 95°C (when standard polymerase is used), or with a shortened denaturation step at 100°C and special chimeric DNA polymerase. Colonies from the master mix that shows the desired product are then tested individually.
The Digital polymerase chain reaction simultaneously amplifies thousands of samples, each in a separate droplet within an emulsion.
No comments:
Post a Comment